Reduction of imines by hydroxycyclopentadienyl ruthenium hydride: intramolecular trapping evidence for hydride and proton transfer outside the coordination sphere of the metal.
نویسندگان
چکیده
Reduction of imines by [2,5-Ph2-3,4-Tol2(eta(5)-C4COH)]Ru(CO)2H (2) produces kinetically stable ruthenium amine complexes. Reduction of an imine by 2 in the presence of an external amine trap gives only the complex of the newly generated amine. Reaction of 2 with H2N-p-C6H4N=CHPh (11), which contains an intramolecular amine trap, gave a 1:1 mixture of [2,5-Ph2-3,4-Tol2(eta(4)-C4CO)](CO)2RuNH(CH2Ph)(C6H4-p-NH2) (8), formed by coordination of the newly generated amine to the ruthenium center, and [2,5-Ph2-3,4-Tol2(eta(4)-C4CO)](CO)2RuNH2C6H4-p-NHCH2Ph (9), formed by coordination of the amine already present in the substrate. These results require transfer of hydrogen to the imine outside the coordination sphere of the metal to give a coordinatively unsaturated intermediate that can be trapped inside the initial solvent cage. Amine diffusion from the solvent cage must be much slower than coordination to the metal center. Mechanisms requiring prior coordination of the substrate to ruthenium would have led only to 8 and can be eliminated.
منابع مشابه
Mechanism of hydrogen transfer to imines from a hydroxycyclopentadienyl ruthenium hydride. Support for a stepwise mechanism.
The negligible double kinetic deuterium isotope effect (k(HH)/k(DD)= 1.05) in the reaction where [2,3,4,5-Ph4(eta5-C4COH)Ru(CO)2H (2) transfers a hydride and a proton to N-phenyl-[1-(4-methoxyphenyl)ethylidene]amine (4) indicates that no bond to hydrogen is broken or formed in the rate-determining step.
متن کاملHydrogen elimination from a hydroxycyclopentadienyl ruthenium(II) hydride: study of hydrogen activation in a ligand-metal bifunctional hydrogenation catalyst.
At high temperatures in toluene, [2,5-Ph(2)-3,4-Tol(2)(eta(5)-C(4)COH)]Ru(CO)(2)H (3) undergoes hydrogen elimination in the presence of PPh(3) to produce the ruthenium phosphine complex [2,5-Ph(2)-3,4-Tol(2)-(eta(4)-C(4)CO)]Ru(PPh(3))(CO)(2) (6). In the absence of alcohols, the lack of RuH/OD exchange, a rate law first order in Ru and zero order in phosphine, and kinetic deuterium isotope effec...
متن کاملExperimental and Theoretical Study of CO2 Insertion into Ruthenium Hydride Complexes.
The ruthenium hydride [RuH(CNN)(dppb)] (1; CNN = 2-aminomethyl-6-tolylpyridine, dppb = 1,4-bis(diphenylphosphino)butane) reacts rapidly and irreversibly with CO2 under ambient conditions to yield the corresponding Ru formate complex 2. In contrast, the Ru hydride 1 reacts with acetone reversibly to generate the Ru isopropoxide, with the reaction free energy ΔG°(298 K) = -3.1 kcal/mol measured b...
متن کاملSteric effect for proton, hydrogen-atom, and hydride transfer reactions with geometric isomers of NADH-model ruthenium complexes.
Two isomers, [Ru(1)]2+ (Ru = Ru(bpy)2, bpy = 2,2'-bipyridine, 1 = 2-(pyrid-2'-yl)-1-azaacridine) and [Ru(2)]2+ (2 = 3-(pyrid-2'-yl)-4-azaacridine), are bioinspired model compounds containing the nicotinamide functionality and can serve as precursors for the photogeneration of C-H hydrides for studying reactions pertinent to the photochemical reduction of metal-C1 complexes and/or carbon dioxide...
متن کاملElectrogenerated polypyridyl ruthenium hydride and ligand activation for water reduction to hydrogen and acetone to iso-propanol.
The complex [Ru(tpy)(bpy)(S)](2+) (tpy = 2,2':6',2''-terpyridine, bpy = 2,2'-bipyridine, S = solvent) is an electrocatalyst for water or proton reduction to hydrogen and for reduction of acetone to iso-propanol in CH3CN. Electrocatalysis is initiated by sequential 1e(-) reductions at the tpy and bpy ligands followed by addition of water to give a ruthenium hydride intermediate. Significant rate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 127 40 شماره
صفحات -
تاریخ انتشار 2005